Thinking Straight (Ahead)

By Howard J. Dananberg, DPM

This will be the first article of a series that describes a medical, mechanical and manipulative approach to management o sagittal plane pathomechanics. Modern
podiatric biomechanics has previously pociatric biomechanics has previously evaluation since the earliest days mof it development in the late 1960 's. 1 The use of rear foot posting became the most common type of orthotic therapy as it was believed tha all pathology stemmed from excessive fronta pesults seemed acceptable joint. While frustration with this as their only approach and many conditions failed to respond to this type of treatment. By combining with the Vasyli family of companies, a new produc line (Vasyli-Dananberg) will be developed that will add the tool of sagittal plane treatment to the orthotic therapy management.

When a subject steps forward, a complex series of inter-limb actions occur in sequence, creating what we have come to understand as the gait cycle. Viewing this view (ie, hallway perspective), the dynamics of the sagittal plane become hidden. For instance, the combination of reduced hip extension with simultaneous fiexion of the knee is simply not perceptible. However. once the observer steps to a point of view suddenly a new world opens to the kinetic process of human walking. When one only considers the rear view, the combined amount of foot level motion of inversioneversion and internal-external rotation
are well below 20°. However considering are well below 20°. However, consiaering
the normal range of motion of 65° of only the metatarso-phalangeal joints, then the magnitude of sagittal plane motion starts magnitude of sagittal pare motion starts
to be evident. When the sagittally based pivotal sites of the heel and ankle join are coupled with extension mechanics o
the hip, the amount of motion through the the hip, the amount of motion through the
sagittal plane becomes a dramatic increase as compared to only the frontal-transverse (and traditional) perspective. Not viewing the sagittal plane is akin to ignoring it presence. Failure of normal sagittal plan pivotal motion to occur in a timely fashion
would require force dissipation through the remaining planes. What we hav traditionally called "excessive midstance

1st metatarsal head plantartiexion can be achieved, thus alleviating the potential for
Fhl to develop. The practical application of Fh to develop. The practical application of
these modifications will be discussed in later articles.

2. Structural hallux limitus

Structural hallux limitus or Shl represents the degenerative joint process involving
the 1st MTP ioint. Motion can be partily or completely (hallux rigidus) restricted. Classic treatment of Shl involved the reduction of motion at the 1st MTP joint, with the basic reasoning that "it hurts to move, so let's prevent the motion". To think about Shl in another way, however, opens up a
new way to approach this painful condition, new way to approach this painful condition,
and thus reverse (partially or completely) the and thus reverse (partially or completely) the
degenerative process. One can think of Sh as hurting "because it doesn't move when it should". In other words, Shl is a RESULT o repetitive strain applied to the 1st MTP join because the precursor to Shl is Fhl. So, the joint fails to move at the time when maximum
motion is required. Jamming of the joint results with eventual structural changes developing as the body repeatedly tries to repair the chronically injured site. 5 Use of the Vasyli-Dananberg device is one part of the treatment equation, and the adoition of oiner These will be covered in future articles.
3. Ankle equinus

Ankle Dorsiflexion 5. Hip ioint Equinus (F)
6. Forefoot pain/midfoot pain

1. Functional hallux limitus:

Functional hallux limitus or Fhl, is a strictly dynamic condition in which normal motion exists at the 1st metatarso-phalangeal (MTP) oint during non-weight bearing examation. When loaded and strictly during the single support phase of the gait cycle, however, ange of motion is available. This paradox is what defines Fhl. There is often no pain
associated with the 1stMTP Joint and patients will rarely, if ever, complain about symptom at this location. They will, however, complain about pain as the foot and more proximal structures are repeatedly stressed during the functional disocrder the wee of othotic modifications are required for management. This is the basic principle around the VasyliDananberg device. By using a variety of removable plugs on the inferior surface of

During the normal gait cycle when one limb is swinging, there is a comparable time when the opposite foot is flat on the support surface. Since the body continues to move over the weight bearing foot, there must exist a mechanism to allow for this to occur permits forward motion of the body over the fully planted foot. Restrictions to ankle joint dorsifiexion have been commonly reierred to as ankle equinus, and it has most "pronation" relanced to as one of the
present during foot function. Ankle equinus was previously managed via a program of vigorous stretching and or surgery to engthen the Achiles tendon. Future articles will specifically denote how manipulation of the fibula and talus can restore motion to
the ankle joint. Other neuromuscular affects also occur and these will be described, along with recommendations for a large variety of common problems of the foot and ankle related to the equinus state. 6
4. Forefoot equinus

Forefoot equinus is another way to view the ferformity associated with cavus feet. In a forefoot equinus situation, the level of the metatarsal heads is essentially "lower" than the level of the heel. In affect, it causes a dorsifilexion moment to be applied to the ankle joint, as the forefoot loads during the
gait cycle. A simple way to visualize this problem is to think of it as making the body walk "uphill" all the time. Elevation of the heel with the correct forefoot modification is the most straightforward approach to
management.
5. Hip joint arthritis

Degenerative disease of the hip is a common orthopedic problem. Some stress reduction via foot orthotic management may be may ultimately require surgical management. Patients who are unable to extend their hips Patients who are unaide to extend their nips
during the normal gait cycle can be helped if lack of motion is related strictly to some type of compensatory process.
6. Forefoot or midfoot pain

Chronic pain in the forefoot (including corns and callouses) or pain in the midfoot due to degenerative joint disease prevent norma
forefoot loading and the ability to raise the heel about this forefoot pivot. Careful diagnosis and treatment are required to manage this type of patient, and surgen may ultimately be required for positive long-
term outcome. Certain types of midfoo pain are related to restriction in joint mobility, and manipulation/mobilization can often be extraordinarily successful. These techniques will be described in detail both in future future web well as on the Vasyil website
in conclusion, one or multiple entities can exist that alter the ability of the body to exist that alter the abiity of the body to
phase of the gatt cycle. These in turn create compensations within the foot and more many painful pathological conditions ranging from plantar fasciitis, to knee pain to chronic wer back pain. Localized treatments can be very effective, but relieving the repetitive prevents recurrence. The purpose of this series is to detail how these compensations ccur and what are the best available methods of treatment. to Chronic Lower Back Pain. .

```
REFERENCES:
1. Root, M., Weed, J \& Orien, W 1977 Abnormal and Normal Function of the Foot, Clinical Biomechanics Corp. Los Angeles, CA
2. Werrick, Justin, and Dananberg. Howerd J. 1988 Ovense Injuries in Pooliatry Tracts, October Data Trace Medical Publishers, Batimoric
3. Dannanberg, H, Guiliano, M, "Chronic Lower Back Pain And It Response to Custom Foot Orthoses", Journal of he American Pooliatric Medical Association, 89:3 March, 4. Dananherrg, How
4. Danannerrg. Howard J. "Functional Hallux Limitus and s. Relationship to Gait Efficiency" in The Journal of the Dananhbeciaric Mecical Association; November 1986 Halux Limitus", "A New Protocol for Understanding Mediea/ Assocition presentation, American Pooriatric Medical
, 2 2006
6.Danan
6.Dananberr, H, H, Shearstone, J, Guiliano, M "Manipulation Weinoo for the Treatment of Ankle Equinus, "Jourmal
``` September, 2000 pp \(385-389\)```

